Stephen L. Chiu

Rockwell Science Center
Thousands Oaks, California 91360

Fuzzy MODEL
IDENTIFICATION BASED ON

CLUSTER ESTIMATION

ABSTRACT

We present an efficient method for estimating cluster
centers of numerical data. This method can be used to
determine the number of clusters and their initial values
for initializing iterative optimization-based clustering
algorithms such as fuzzy C-means. Here we use the
cluster estimation method as the basis of a fast and
robust algorithm for identifying fuzzy models. A
benchmark problem involving the prediction of a cha-
otic time series shows this model identification method
compares favorably with other, more computationally
intensive methods. We also illustrate an application of
this method in modeling the relationship between au-
tomobile trips and demographic factors. € 1994 John
Wiley and Sons, Inc.

INTRODUCTION

Clustering of numerical data forms the basis of
many classification and system modeling algo-
rithms. The purpose of clustering is to distill
natural groupings of data from a large data sct,
producing a concise representation of a system’s
behavior. In particular, the fuzzy C-means
(FCM) clustering algorithm (Dunn, 1974; Bez-
dek, 1974; Bezdek et al., 1987) has been widely
studied and applicd. The FCM algorithm is an
iterative optimization algorithm that minimizes
the cost function

c

h
=2 2 willxe = wll
k=1i=1

where n is the number of data points, ¢ is the
number of clusters, x, is the kth data point, v, is
the ith cluster center, u,, is the degree of mem-
bership of the kth data in the ith cluster, and m
is a constant greater than 1 (typically m =2).
The degree of membership w,, is defined by

Journal of Intelligent and Fuzzy Systems, Vol. 2, 267-278 (1994)

© 1994 John Wiley & Sons, Inc.

o = ! REES

Z ([xk* V“)Z/(m*])

IR

Starting with a desired number of clusters ¢ and
an initial guess for each cluster center v, i=
1,2,...,¢c, FCM will converge to a solution for
v, that represents either a local minimum or a
saddle point of the cost function (Bezdek et al.,
1987). The quality of the FCM solution, like that
of most nonlinear optimization problems, de-
pends strongly on the choice of initial valucs
(i.e., the number ¢ and the initial cluster
centers).

Yager and Filev (1992) proposed a simple and
effective algorithm, called the Mountain Meth-
od, for estimating the number and initial loca-
tions of cluster centers. Their method is based on
making a grid of the data space and computing a
potential value for each grid point based on its
distances to the actual data points; a grid point
with many data points nearby will have a high
potential value. The grid point with the highest
potential value is chosen as the first cluster cen-
ter. The key idea in their method is that once the
first cluster center is chosen, the potential of all
grid points are reduced according to their dis-
tance from the cluster center. Grid points near
the first cluster center will have greatly reduced
potential. The next cluster center is then placed
at the grid point with the highest remaining
potential value. This procedure of acquiring ncw
cluster center and reducing the potential of sur-
rounding grid points repeats until the potential
of all grid points falls below a threshold. Al-
though this mcthod is simple and effective, the
computation grows cxponentially with the di-
mension of the problem. For example, a cluster-

CCC 1064-1246/94/030267-12

ing problem with 4 variables and cach dimension
having a resolution of 10 grid lines would result
in 10" grid points that must be evaluated.

We present a modified form of the Mountain
Method for cluster estimation. We consider cach
data point, not a grid point, as a potential cluster
center. Using this mcthod, the number of effec-
tive “grid points” to be evaluated is simply equal
to the number of data points, independent of the
dimension of the problem. Another advantage of
this method is that it eliminates the need to
specify a grid resolution, in which trade-offs
between accuracy and computational complexity
must be considered. We also improve the com-
putational efficiency and robustness of the origi-
nal method via other modifications.

Although clustering is generally associated
with classification problems, here we use the
cluster estimation method as the basis of a fuzzy
model identification algorithm. The key to the
speed of this model identification algorithm is
that it does not involve any iterative nonlinear
optimization; in addition, the computation grows
only linearly with the dimension of the problem.
We use a benchmark problem in chaotic time
series prediction to compare the performance of
this algorithm with the published results of other
algorithms. We also show an application: es-
timating the number of automobile trips gener-
ated from an arca based on its demographics.

CLuUsTER EsTiIMATION

Consider a collection of »n data points
{x,,x,,...,x,} in an M-dimensional space.
Without loss of generality, we assume that the
data points have been normalized in each dimen-
sion so that their coordinate ranges in cach
dimension are equal, i.e., the data points are
bounded by a hypercube. We consider each data
point as a potential cluster center and define a
measure of the potential of data point x, as

n
P- — 2 e*““r",""/'nz
1
j=1
where

a =

4 2)

~

a

and r, is a positive constant. Thus, the measure
of potential for a data point is a function of its

268 CHIU

distances to all other data points. A data point
with many ncighboring data points will have a
high potential value. The constant r, is effective-
ly the radius defining a neighborhood; data
points outside this radius have little influence on
the potential. This measurc of potential differs
from that proposed by Yager and Filev in two
ways: (1) the potential is associated with an
actual data point instead of a grid point; (2) the
influence of a neighboring data point decays
exponentially with the square of the distance
instead of the distance itself. Using the square of
the distance eliminates the square root operation
that otherwise would be needed for determining
the distance itself.

After the potential of every data point has
been computed, we select the data point with the
highest potential as the first cluster center. Let
x7 be the location of the first cluster center and
P7 be its potential value. We then revise the
potential of cach data point x; by the formula

P, &P~ PTe‘BH";"‘?”z (3)
where

4
B==
rb
and r, is a positive constant. Thus, we subtract
an amount of potential from each data point as a
function of its distance from the first cluster
center. The data points ncar the first cluster
center will have greatly reduced potential, and
therefore are unlikely to be selected as the next
cluster center. The constant r, is effectively the
radius defining the neighborhood that will have
measurable reductions in potential. To avoid
obtaining closely spaced cluster centers, we sct r,
to be somewhat greater than r,; a good choice is
r,=1.5r,.

When the potential of all data points have
been revised according to eq. (3), we select the
data point with the highest remaining potential
as the second cluster center. We then further
reduce the potential of each data point according
to their distance to the second cluster center. In
general, after the kth cluster center has been
obtained, we revise the potential of each data
point by the formula

Pé P — Pterﬁ‘ht”"’/:“l

where x} is the location of the kth cluster center
and P} is its potential value.

In Yager and Filev’s procedure, the process of
acquiring new cluster center and revising po-
tentials repeats until

Py <ePy

where ¢ is a small fraction. The choice of & is an
important factor affecting the results; if £ is too
large, too few data points will be accepted as
cluster centers; if ¢ is too small, too many cluster
centers will be generated. We have found it
difficult to establish a single value for & that
works well for all data patterns, and have there-
fore developed additional criteria for accepting/
rejecting cluster centers. We use the following
criteria:

if P;>¢eP?
Accept x§ as a cluster center and continue.
else if P; <gP7
Reject x; and end the clustering process.
else
Let d,,,, = shortest of the distances between
xy and all previously found cluster
centers.

*
if Lnin f{ =1
ra Pl
Accept x5 as a cluster center and con-
tinue.
else
Reject x§ and set the potential at x} to 0.
Select the data point with the next highest
potential as the new x} and re-test.
end if
end if

Here & specifies a threshold for the potential
above which we will definitely accept the data
point as a cluster center; ¢ specifics a threshold
below which we will definitely reject the data
point. We use £ =0.5 and g =0.15. If the po-
tential falls in the gray region, we check if the
data point provides a good trade-off between
having a sufficient potential and being suffi-
ciently far from existing clusters centers.

MobDEL IDENTIFICATION

When we apply the cluster estimation method to
a collection of input/output data, each cluster
center is in essence a prototypical data point that

exemplifies a characteristic behavior of the sys-
tem. Hence, each cluster center can be used as
the basis of a rule that describes the system
behavior.

Consider a set of ¢ cluster centers
{x¥.x%,...,x* in an M-dimensional space.
Let the first N dimensions correspond to input
variables and the last M-N dimensions corre-
spond to output variables. We decompose each
vector x* into two component vectors y* and z7,
where y* contains the first N elements of x7
(i.e., the coordinates of the cluster center in
input space) and z* contains the last M—N ele-
ments (i.e., the coordinates of the cluster center
in output space).

We consider cach cluster center x7 as a fuzzy
rule that describes the system behavior. Given
an input vector y, the degree to which rule i is
fulfilled is defined as

;,L,.:ew‘ly vill? (4)

where « is the constant defined by eq. (2). We
compute the output vector z via

E Mz7
z:"—’lf—. (5)
2 Hi

i1

We can view this computational model in
terms of a fuzzy inference system employing
traditional fuzzy if-then rules. Each rule has the
following form:

ifYisA & Y,is A, &. .. then Z,
isB, & Z,is B,. ..

where Y is the jth input variable and Z; is the jth
output variable; A, is an cxponential member-
ship function and B, is a singlcton. For the ith
rulc that is rcpresented by cluster center x7, A;
and B, are given by

Alq)=eir (6)

B =z (7
where y7 is the jth clement of y% and z;; is the
jth element of z%. Our computational scheme is
equivalent to an inference method that uses mul-
tiplication as the AND operator, weights the
output of cach rule by the rule’s firing strength,

Fuzzy MoODEL IDENTIFICATION 269

and computes the output value as a weighted
average of the output of each rule. Tt is also
interesting to note the correspondence between

cgs. (4) and (5) and the Radial Basis Functions -

(RBF) approach to modeling (Powell, 1987),
which suggests an alternative interpretation of
this model as a form of RBF modecl.

Egs. (4) and (5) provide a simple and direct
way to translate a set of cluster centers into a
fuzzy model. Yager and Filev (1993) have simi-
larly used the cluster centers extracted by the
Mountain Method to form a fuzzy model; to
optimize the rules, they used backpropagation to
iteratively adjust the Vi z;;, and individual @;
parameters in egs. (6) and (7). We take a differ-
ent approach by allowing z* in eq. (5) to be a
linear function of the input variables, instead of
a simple constant. That is, we let

2i=Gy+h (8)

where G, is an (M — N) X N constant matrix,
and A, is a constant column vector with M—N
elements. The equivalent if-then rules then be-
come the Takagi-Sugeno type (Takagi and
Sugeno, 1985), where the consequent of each
rule is a linear equation in the input variables.
Models that employ the Takagi—Sugeno type
rules have been shown to be able to accurately
represent complex behavior with only a few rules
(Sugeno and Tanaka, 1991). We will refer to
fuzzy models that set z* as a constant as *‘Oth
order models,” and those that employ eq. 8 as
“Ist order models.”

Expressing z7 as a linear function of the input
allows a significant degree of rule optimization to
be performed without adding much computation-
al complexity. As pointed out by Takagi and
Sugeno (1985), given a set of rules with fixed
premises, optimizing the parameters in the con-
sequent equations with respect to training data
reduces to a linear least-squares estimation prob-
lem. Such problems can be solved easily and the
solution is always globally optimal.

To convert the equation parameter optimi-
zation problem into the linear least-squares esti-
mation problem, we define

M

2 My
j=1

p; =

Eq. (5) can then be rewritten as

270 CHIU

z= 2 Pz = 2 p(Gy+h,)
i-1

i=1

or

2" =[py" ppyt pll i
G!
hT

where z' and y' are row vectors. Given a collec-
tion of » input data points {y,, y,,..., v,}, the
resultant collection of model output is given by

TG}‘T

T T)
2| et Pyt Py || M
Pen¥n Pen)|GE
T

p—

.T [
Zn pl.nyn pl.n

—

9)

where p, ; denotes p, evaluated at y,. Note that
given {y,, y,,..., y,}, the first matrix on the
right hand side of eq. 9 is constant, while the
second matrix contains all the parameters to be
optimized. To minimize the squared error be-
tween the model output and that of the training
data, we solve the linear least-squares estimation
problem given by Eq. (9), replacing the matrix
on the left hand side by the actual output of the
training data. Of course, implicit in the least-
squares estimation problem is the assumption
that the number of training data is greater than
the number of parameters to be optimized.

Using the standard notation adopted in most
literature, the lcast-squares estimation problem
of eq. (9) has the form

AX =8B

where B is a matrix of output values, A is a
constant matrix, and X is a matrix of parameters
to be estimated. The well-known pseudo-inverse
solution that minimizes ||AX — B||” is given by

X=(A"A) 'A'B.

However, computing (A'A) "' is computationally
expensive when (A'A) is a large matrix (A4'A is
(N + 1) X ¢(N +1)); numerical problems also
arise when (A'A) is nearly singular. We use

another well-known method for solving for X, a
procedure often referred to as recursive least-
squares estimation (Astrom and Wittenmark,
1984; Strobach, 1990). This is a computationally
efficient and well-behaved method that dcter-
mines X via the iterative formulac

X =X+ Si+1ai+1(biT+1 - aiT+1Xi) (10)

T
S:a;.,4;,,5,

S;1=8,—
1+a.,Sa,.,

i+1 i

,i=0,1,...,n—1
(11)

where X is the estimate of X at the ith iteration,
S, is a ¢(N + 1) x ¢(N + 1) covariance matrix, a;
is the ith row vector of A, and b, is the ith row
vector of B. The least-squares estimate of X
corresponds to the value of X, . The initial con-
ditions for this iterative procedure are X,=0
and S; = v/, where [is an identity matrix and y
is a large positive value.

To summarize, the model identification meth-
od consists of two distinct steps: (1) find cluster
centers to establish the number of fuzzy rules
and the rule premises, and (2) optimize the rule
consequents. Neither of these steps involve non-
linear optimization and both steps have well-
bounded computation time. In step 1, the bulk
of the computation time is consumed by evaluat-
ing the initial potential of each data point. Each
subsequent iteration to select a cluster center
and subtract potential consumes the same
amount of time as evaluating the potential of one
data point. Assuming the number of cluster cen-
ters that will be obtained is much less than the
total number of data points, we can accurately
estimate the computation time of step 1 based on
the number of data points alone. However, the
pumber of cluster centers found in step 1 affects
the computation time of step 2 linearly, because
the number of parameters to be optimized grows
linearly with the number of clusters. Hence, we
can determine the computation time of step 2
only after step 1 is completed.

Although the number of clusters (or rules) is
automatically determined by this method, we
should note that the user-specified parameter r,
(i-e., the radius of influence of a cluster center)
strongly affects the number of clusters that will
be generated. A large r, generally results in
fewer clusters and hence a coarser model, while
a small r, can produce excessive number of
clusters and a model that does not generalize

well (i.e., by over-fitting the training data).
Therefore, we may regard r, as an approximate
specification of the desired resolution of the
model, which can be adjusted based on the
resultant complexity and generalization ability of
the model.

REsuULTS

We will first apply the model identification meth-
od to a simple 2-dimensional function-approxi-
mation problem to illustrate some of its prop-
erties. Next we will consider a benchmark prob-
lem involving the prediction of a chaotic time
series and compare the performance of this
method with the published results of other meth-
ods. Lastly, we will show an application model-
ing the relationship between the number of au-
tomobile trips generated from an area and the
demographics of the area.

FunNcTioN APPROXIMATION

For illustrative purposes, we consider the simple
problem of modeling the nonlinear function

sin (y)
z=—"=.
y

For the range [—10, 10], we used equally spaced
y values to generate 100 training data points.
Because the training data arc normalized before
clustering so that they are bounded by a hy-
percube, we find it convenient to express r, as a
fraction of the width of the hypercubce; in this
example we chose r, = 0.25. Applying the cluster
estimation method to the training data, 7 cluster
centers were found. Figure 1 shows the training
data and the locations of the cluster centers.

o cluster centers

training

Figure 1. Comparison of training data with unoptim-
ized Oth order model output.

Fuzzy MoDEL IDENTIFICATION 271

0.8}

0.6

0.4}

0.2}

10

Figure 2. Degree of fulfillment of each rule as a
function of input y.

Figure 1 also shows the output of a Oth order
fuzzy model that uses constant z% as given by the
z coordinate of each cluster center. We see that
the modeling error is quite large. Because the
clusters are closely spaced with respect to the
input dimension, there is significant overlap be-
tween the premise conditions of the rules. The
degree of fulfillment u of each rule as a function
of y (viz. eq. 4) is shown in Figure 2, where it is
evident that several rules can have high firing
strength simultaneously even when the input pre-
cisely matches the premise condition of one rule.
Therefore, the model output is typically a neu-
tral point interpolated from the 2z coordinates of
strongly competing cluster centers.

One way to minimize competition among
closely spaced cluster centers is to use the fuzzy
C-means definition of u, viz. eq. (1). When the
input precisely matches the location of a cluster
center, the FCM definition ensures that the input
will have zero degree of membership in all other
clusters. Using the FCM definition, the degree of
fulfillment p as a function of y is shown in Figure
3 for a typical rule. We see that p is 1 when y is
at the cluster center associated with the rule and

o cluster centers
08}
Hs
0.6}
u

04}
0.2} cluster center #5

4] o

-10 -5 0 S 10

Figure 3. Degree of fillment of a typical rule as a
function of input y, based on the fuzzy C-means
definition of .

272 CHIU

1

08} o cluster centers
training
06} 4
--------- modetl

04l
z
02

0

0.2

-04
-10 -5 0 5 10

Figure 4. Comparison of training data with unoptim-
ized Oth order model output, for the case where
inference computation is based on the fuzzy C-means
definition of u.

drops sharply to zero as y approaches a neigh-
boring cluster. center. The output of the Oth
order fuzzy model when the FCM definition of u
is adopted is shown in Figure 4. It is evident that
the modeling accuracy has improved significant-
ly; in particular, the model output trajectory is
now compelled to pass through the cluster
centers.

Although using the FCM definition of p can
improve the accuracy of unoptimized Oth order
models, we note that the u function and the
resultant model output trajectory have highly
nonlinear “‘kinks” compared to that obtained
with the exponential definition of w. These kinks
tend to limit the ultimately attainable accuracy
when optimization is applied to the model.

We now apply least-squares optimization to
z*%. For illustrative purposes, we consider the two
cases: (1) z¥=h;, and (2) z7= G,y + h;. In the
first case, we retain the assumption of a Oth
order model, but now optimize the constant
value assigned to z*. In the second case, we
assume a 1st order model and optimize both G,
and h,. Table I shows the root-mean-square
(RMS) modeling error resulting from the differ-
ent extents of optimization. Table I also shows
the effects of using the exponential definition of
w versus the FCM definition.

Table I. Comparison of RMS Modeling Error for
Different Extents of Optimization and for Different
Definitions of u

Optimization RMS error RMS error
using EXP u using FCM n

zF unoptimized 0.180 0.119

zi=h, 0.054 0.098

zt =G,y + h, 0.010 0.015

——— training
---------- model

Figure 5. Comparison of training data with opti-
mized Oth order model output.

Using the exponential definition of u generally
results in more accurate optimized models. In
what follows, we will not draw any further com-
parisons between using the exponential defini-
tion versus using the FCM definition, but present
only the results obtained from using the ex-
ponential definition. The output of the optimized
Oth order model is shown in Figure 5 and the
output of the optimized 1st order model is shown
in Figure 6. The consequent function z* = G,y +
h; of each rule is shown in Figure 7.

Although our method can be used to approxi-
mate a function from uniformly distributed data
points as in the above example, the method is
best suited for identifying models from repetiti-
ous experimental data, where there are repeti-
tive behavior patterns that create distinct clusters
in the data space. In the next example, we will
examine a chaotic time series that does create
such a data set.

CHaoTic TIME SERIES PREDICTION

We now consider a benchmark problem in model
identification—that of predicting the time serics

1.2

1+

training

08
0.6
04}
02}t

0 /\/
02| .

04— . .
-10 -5 0 5 10

Figure 6. Comparison of training data with opti-
mized 1st order model output.

consequent |
functions

model output i

Figure 7.
model.

Consequent functions for the 1st order

generated by the chaotic Mackey—Glass differen-
tial delay equation (Mackey and Glass, 1977)
defined by

(1) = 0.2x(t— 1)

= 1—+*x“—)([‘:7) —0.1)6([) .

The task is to use past values of x up to the time
t to predict the value of x at some time ¢+ Ar in
the future. The standard input for this type of
prediction is N points in the time series spaced S
apart, i.e., the input vector is y = {x(t — (N —
DS), ..., x(t—=28), x(t = 85), x(t)}. To allow
comparison with the published results of other
methods, we use 7=17, N=4, §=6, AT=6.
Therefore, each data point in the training sect
consists of

x = {x(t —18), x(t — 12), x(t — 6), x(¢), x(t + 6)}

where the first 4 clements correspond to the
input variables and the last element corresponds
to the output variable. We will compare the
performance of the model identification method
with the Adaptive-Network-Based Fuzzy Infer-
ence System (ANFIS) proposed by Jang (1993)
as well as other ncural network-based and poly-
nomial-fitting methods reported by Crowder
(1990). The ANFIS algorithm also produces
fuzzy models consisting of the Takagi—Sugeno
type rules. After specifying the number of mem-
bership functions for each input variable, the
ANFIS algorithm iteratively learns the parame-
ters of the premise membership functions via
backpropagation and optimizes the parameters
of the consequent equations via linear least-
squares estimation. ANFIS has the advantage of
being significantly faster and more accurate than
many pure ncural network-based methods. Fast
computation speed is attained by requiring much

Fuzzy MODEL IDENTIFICATION 273

less tunable parameters than traditional neural
networks to achieve a highly nonlinear mapping,
and is also attained by optimizing a large fraction
of the parameters via linear least-squares estima-
tion, thus further reducing the use of back-
propagation. Because ANFIS typically has much
less tunable parameters than a traditional necural
network, it can avoid the pitfall of over-fitting
the training data, thereby achieving excellent
generalization ability. Comparison of ANFIS
with our model identification method is par-
ticularly interesting because of the similarity in
model structure. The performance of ANFIS
provides a good indicator of the added benefit
and computational burden that accompany non-
linear optimization of the Takagi-Sugeno type
rules.

For the Mackey-Glass time series problem,
we used the same data set as that used in (Jang
1993), which consisted of 1000 data points ex-
tracted from =118 to ¢=1117. The first 500
data points were used for training the model,
and the last 500 data points were used for check-
ing the generalization ability of the model. As
mentioned previously, the cluster radius 7, is an
approximate specification of the desired res-
olution of the model, which can be adjusted
based on the resultant complexity and generali-
zation ability of the model. To illustrate this
principle, we applied the cluster estimation
method with different values of r, ranging from
0.15 to 0.5 (i.e., the cluster radius was varied
from 0.15 to 0.5 times the width of the data
hypercube). This produced models of varying
size, ranging from 69 rules to 9 rules. For each
model, the consequent equations for a Ist order
model were then optimized. Figure 8 shows the
number of rules generated, as well as the model-
ing errors with respect to the training data and
checking data, as functions of the cluster radius.

x *-- number of rules 1

0.008 |-) o— checking error 160
* x—- training error a
- {50 2
£ 0.006 | I
= 440 '3
(2] -
= | 2
~ 0.004 130 2
=
420 Z

0.002 +
Tty 410
0 0

0.15 0.2 0.25 03 0.3 0.4 0.45 0.5
Cluster Radius ry

Figure 8. Model size and prediction error as func-
tions of cluster radius.

274 CHIU

r4

training model

1 /]

0.8

0.6+

0.4

0 100 200 300 400 500
Sample No.

Figure 9. Comparison of training data with model

output for Mackey—Glass time series.

We see that the error with respect to the training
data and error with respect to the checking data
begin to diverge when the cluster radius is less
than 0.3, showing that the model is over-fitting
the training data as the number of fitting param-
eters becomes too large. We use the results at
r, = 0.3 (a model with 25 rules) as the basis for
comparison with other algorithms. Figures 9 and
10 show the model output evaluated with respect
to training data and checking data, respectively.
We see that the model output is indistinguishable
from both training and checking data. The clus-
ter centers and consequent equations for this
model are listed in Appendix A.

The modecling error with respect to the check-
ing data is listed in Table II along with the
results from the other methods as reported in
Jang (1993) and Crowder (1990). The error
index shown in Table II is a non-dimensional
error defined as the RMS error divided by the
standard deviation of the actual time series
(Jang, 1993; Crowder, 1990). Comparison be-
tween the various methods shows that the cluster
estimation-based method can provide approxi-
mately the same degree of accuracy as the more
complex methods. Only ANFIS produced a re-

checking

- modéﬂ

06}
ol
0 100 200 300 400 500
Sample No.
Figure 10. Comparison of checking data with model

output for Mackey—Glass time series.

Table II. Comparison of Results from Different
Methods of Model Identification*

Method # Training Error
Data Index
Cluster Estimation-Based 500 0.014
ANFIS 500 0.007
Auto-Regressive Model 500 0.19
Cascaded-Correlation NN 500 0.06
Back-Prop NN 500 0.02
6th-order polynomial 500 0.04
Linear Predictive Method 2000 0.55

*Rows 2 and 3 arc from Jang (1993); the last 4 rows are
from Crowder (1990).

sult that is more accurate than the cluster estima-
tion-based method. The ANFIS model refer-
enced here uses two membership functions for
each input variable; for the 4-input Mackey—
Glass problem, this leads to 2* = 16 fuzzy parti-
tions in the input space, and thus 16 rules. This
ANFIS model has 24 parameters optimized via
back-propagation (3 parameters for each premise
membership function) and 80 parameters opti-
mized via linear least-squares estimation (5 pa-
rameters for each consequent equation). The
cluster estimation-based method does not in-
volve any nonlinear optimization but the re-
sultant model has 125 consequent parameters
optimized via linear least-squares estimation.
Identifying the Mackey—Glass model via the
ANFIS algorithm ({(coded in C) required
1.5hours on an Apollo 700 series workstation
(Jang 1993), while the cluster estimation-based
algorithm (also coded in C) was able to identify
the model in 2 minutes on a Macintosh Centris
660AV (68040 processor running at 25 MHz).

TRiIP GENERATION MODELING

We have applied the model identification method
to estimate the number of automobile trips gen-
erated from an area based on the demographics
of the area. Five demographic factors were con-
sidered: population, number of dwelling units,
vehicle ownership, median household income,
and total employment. Hence, the model has 5
input variables and 1 output variable.
Demographic and trip data for 100 traffic anal-
ysis zones in New Castle County, Delaware,
were used; this data was transcribed directly
from (Kikuchi et al., 1994). Of the 100 data
points, we randomly selected 75 as training data
and 25 as checking data. Using r,=0.5, the

S

——— checking
2 s model
c
3
=
£ 6
=
E a4t : J
s : : .
=} : : : e
ol L HI f'erM» .,_Jj,|'\il-ii:\:
0 5 10 15 20 25
Sample No.

Figure 11. Comparison of checking data and model
output for trip generation modeling.

model identification algorithm generated a 1st
order model comprised of 3 rules. The computa-
tion time was 2 seconds on a Macintosh Centris
660AV. The cluster centers and consequent equa-
tions for this model are listed in Appendix B
along with the data sct. A comparison of the
model output with that of the checking data is
shown in Figure 11. The average modeling error
with respect to the training data was (.34 and
that with respect to the checking data was 0.37,
indicating the model generalizes well.

The fact that we can accurately cover a 6-
dimensional data space with only 3 rules attests
to the particular advantages of using the Takagi-
Sugeno type rules.

CONCLUSION

We presented a cluster estimation method based
on computing a measure of potential for each
data point and iteratively reducing the potential
of data points near new cluster centers. The
computation grows only linearly with the dimen-
sion of the problem and as the square of the
number of data points. This method can be used
to estimate the number of clusters and their
locations for initializing iterative optimization-
based clustering algorithms such as fuzzy C-
means, or it can be used as a stand-alone approx-
imate clustering algorithm.

Combining the cluster estimation method with
a linear least-squares estimation procedure pro-
vides a fast and robust algorithm for identifying
fuzzy models from numerical data. Fast compu-
tation and robustness with respect to initial pa-
rameter values are achieved by avoiding any
form of nonlinear optimization. Robustness with
respect to noisy data is achieved by the data

Fuzzy MODEL IDENTIFICATION 275

averaging that takes place in both the cluster
estimation and least-squarcs estimation proce-
dures. The cluster center selection criteria also
avoid engendering a rule from a few erroneous
outlying data points. Although there exist even
simpler and faster model identification methods
based on look-up tables (Wang and Mendel,
1992) and nearest neighbor clustering (Wang,
1993), they are scnsitive to noisy data and prone
to gencrating a rule from a single outlying data
point. Compared with more complex model
identification methods, our method can provide
similar degree of accuracy and robustncss with
respect to noisy data while significantly reducing
computational complexity.

The author thanks Jyh-Shing Jang at MathWorks Inc.
for providing the data set for the Mackey—Glass
benchmark problem.

APPENDIX A: MACKEY-GLASS
EXAMPLE

The input coordinates of the 25 cluster centers
obtained in the Mackey—Glass example are

yi={0.9479 1.0659 1.1352 1.1393};
yi={1.0754 1.1344 1.1514 1.0481);
yi ={1.1302 1.1135 1.0133 0.7805);
yE ={0.6686 0.8264 1.0728 1.1912};
yi ={0.7423 0.6652 0.8227 1.0942);
yi={1.1165 0.9671 0.7594 0.6748);
v ={0.9206 0.7423 0.6652 0.8227};
yi =1{0.4807 0.8575 1.0007 0.9736}:
yi ={0.8636 0.9930 0.9652 1.1350};
yi={1.2177 1.2001 0.8946 0.6462};
yi={1.1578 1.2177 1.2001 0.8946);
v, ={0.5295 0.4807 0.8575 1.0007);
yi={0.7295 0.4978 0.5256 0.9060};
yip=1{0.7209 1.0240 1.1812 1.2551};
yis={1.0503 0.7635 0.5383 0.5456};
Yie={1.0240 11812 1.2551 1.2063};
yi={1.2885 1.0440 0.7295 0.4978};
yie=1{0.8753 0.6038 0.4473 0.7307};
yio= {12064 1.2985 1.0902 0.7687};
yi ={1.2063 0.8753 0.6038 0.4473};
y3 = {04542 0.6581 0.9713 0.9814);
vz ={1.0547 0.8067 0.7005 0.6865);
v = {0.6581 0.9713 0.9814 1.0441};
y3:=1{0.8030 0.6702 0.6539 0.9690};
vi=1{0.8792 1.1165 1.2329 1.3114};

276 CHIU

The corresponding output equations are

#

27 =[-0.8697 —0.8586 1.0985 —0.0564|y+ 1.6473;
25 =[—1.0967 —0.9421 0.6509 —0.6423]y + 2.9419;
78 =[-0.7946 —1.0950 0.4198 —0.1406]y + 2.4973;
%= 0.3083 0.4635 -0.2907 0.4160]y + 0.5212;
¢ =] 03139 03855 —0.2474 1.0058]y + —0.1857;
zp =[—12992 -1.1434 0.8059 —0.1730]y + 2.8149;
23 =[-0.1268 —0.1224 0.1161 0.3606]y + 0.9253;
zh =[-0.0703 0.2306 0.3994 0.3059]y + 0.2751;
zh =[0.1789 —0.8965 0.4342 —0.7345]y + 2.2661;
i =1-0.1002 —0.7315 0.0730 0.3958]y + 1.0337;
zh = [=03041 ~0.5097 —0.0372 0.3868]y + 1.3105:
zh=[02663 04642 —0.0061 0.6957]y + —0.0812:
=] 01212 0.7959 —0.0774 0.6178]y + —0.0061;
zh =1 0.1507 ~0.8888 0.7914 0.5092]y + 0.4449;
25 =1-0.4307 02197 -0.0546 0.4831]y + 0.9631;
zr=[0.7240 —0.8738 0.0097 0.9832]y + —0.0493;
=] 01229 —1.4434 0.479 0.6150}y + 1.2162;
Zh=] 02107 0.7624 —0.5270 0.8313]y + ~0.0301;
zh=[0.0484 —0.7196 0.1410 0.7079]y + 1.0026;
2% =[-0.3792 —0.8591 0.2753 0.4111]y+ 1.5885;
zi =] 02770 04025 0209 05101}y + —0.0530;
2 =[—1.1732 —0.3864 07371 —0.2440]y + 2.1758;
¥ =1-0.0953 —0.1108 0.1202 —0.1231]y + 1.3095;
2 =] 01712 0.6240 —0.1140 0.7559]y + —0.0701;
z¥ =] 0.6685 —1.9702 0.0110 13578}y + 0.8858;

where y is a column vector of the input values:
[x(r —18), x(1 — 12), x(t — 6), x(1)].

APPENDIX B: TrRiIP GENERATION
MobDELING

The input coordinates of the 3 cluster centers
obtained for the trip generation model arc

yi=1{1.5070 0.6570 0.7060 15.7350 0.6360};

1={3.1160 1.1930 1.4870 19.7330 0.6030};
y3=1{0.0440 0.0240 0.0210 9.3400 0.8500};

The corresponding output equations are

z7=[0.1337 0.1804 —0.5726 —0.0106 0.7147]y
+ 1.1966:;

25 =[-0.7630 —0.1457 2.1074 0.0017 1.4631]y
+ 0.8378;

z3=[~1.7168 —1.9202 7.5741 0.0955 0.4707]y

+ —0.4319;

where y is a column vector of the input values:
[population, number of dwelling units, vehicle
ownership, median income, total employment].
The trip generation data are given in Table B-I.
All numbers are cxpressed in units of a
thousand.

Table B-1.

Trip Generation Data

Table B-1. (continued)

Popula- Dwelling Vehicle Median Total No. of Popula- Dwelling Vchicle Median Total No. of
tion Units Owner- Income Employ- trips tion Units Owner- Income Employ- trips

ship ment ship ment

Training Data
0.038 0032 0019 11429 16439 8.460 2487 0783 1514 24101 1399 3.194
0.148 0062 0051 9375 3.176 2250 1.089 0430 0734 18971 0247 1.114
0.244 0.139 0068 6.673 0.193 0317 0293 0.117 0.188 27.220 0.108 0.518
0.222 0.204 0.064 7.738 3.450 1.907 2.101 0.836 1.318 18.686 0.322 2.105
0.023 0.013 0.039 10.125 7.064 4.746 1.028 0.453 0.657 15.944 1.812 4.431
0.411 0.192 0.093 7.824 0.179 0.375 3.562 1.360 1.844 20.053 2.000 5.049
0.132 0.040 0.017 5378 0.627 0.540 4247 1.651 2526 20.093 0.265 3.138
0.044 0.024 0.021 9.340 0.850 0.768 2,674 1.022 1.649 26.034 0.109 2.015
0.066 0.011 0004 11.705 0.859 0.605 1381 0515 0961 31250 3.363 2.302
0537 0250 0203 17.406 2.568 2.298 1131 0.494 0731 18.873 1.286 1.714
1.465 0471 043 17.340 1.341 1.708 2210 0805 1460 25.000 0477 2383
1357 0433 0303 8260 0411 0.843 0.450 0.188 0212 13.251 0.418 0.951
4071 1348 1339 11.590 1.486 2.801 3206 1.075 1567 17.099 0.710 2.373
2277 0789 0569 18.451 0.602 1.239 3071 1.035 1.562 20454 0.599 2.670
3.837 1355 1347 14125 1.077 2756 2358 0732 1.235 24159 0592 1.749
1590 0762 0747 11703 0357 1.304 2507 0.857 1.495 21.843 0.073 1723
3116 1.193 1487 19733 0.603 2.385 6.577 2122 3710 26345 0536 4.902
1.368 0.517 0.708 25.681 1.265 1.883 3.047 1.175 2.014 25.889 0.684 3.151
0.937 0.448 0.639 21.691 0.585 1.242 3.551 1.674 2131 19.401 1.584 4.698
3.419 2333 1766 13.403 0.870 2.946 0229 0.098 0.146 30.428 1.927 5.127
1.877 0763 0917 18750 1.565 2.183 2731 0.811 1.545 34.58 2.473 6575
1872 0.831 1.065 27.661 0.667 1.868 3510 1.008 2273 41.679 0.235 2.864
3107 1369 1.561 16.843 1.146 2.772 3390 1.073 2.329 48.440 0316 3.074
1.535 0.605 0.784 16.544 0399 1.313 20246 0.809 1.477 31303 0.111 1.803
2326 0.931 0.612 11.454 0573 1.472 _
3340 0925 0775 11.560 0942 1.852 , , Checking Data
2223 0850 0970 16400 2.524 3.177 4107 1.389 2.623 24.234 0789 3.930
3274 1065 1.003 13.193 0750 2.037 2.057 0715 1359 36.643 0487 2.530
1490 0592 068 13.796 1.797 2.037 Ledl 0739 1149 23.285 0473 1.809
3.447 1366 1396 16461 0.705 2.349 0.035 0015 0012 12,624 3.239 2017
3035 1176 1494 18963 0447 2169 0.803 0290 0523 28835 0.131 0.674
0.003 0.004 0002 6036 1.687 1272 3457 1237 1604 17.665 0.269 2229
1.600 0506 0260 5369 1.385 1.467 4.940 1760 3161 22458 0.647 4.058
0398 0.1 0.132 8159 0.625 0.648 3.605 1.098 2288 37.019 0.611 3.390
239 0901 0542 8603 1270 1.838 0.118 0048 0013 15753 0752 0.652
2.698 1268 0541 6.663 0.758 1.548 2336 0790 1461 22426 0385 1.944
0.414 0.144 0.080 13.119 0245 0.387 3492 1515 2296 21174 0.983 1.746
0037 0015 0005 9659 1277 0966 LO47T 0238 0419 17073 1264 1737
2760 1333 1200 13.498 1.064 2.996 1239 0.504 0792 22173 0.222 1322
Wat6 Lese 2719 26266 0817 3631 0.110 0082 0.028 7.78 0.689 0.641
1.507 0.657 0706 15735 0.636 1.446 2264 0.866 1.661 35994 0.431 2.384
U179 0434 0944 32398 1353 2.490 2637 0897 1680 27.938 0357 2660
1727 0.690 1.232 30.573 1.397 3.253 4783 1737 2784 22288 3.490 7.605
3118 1175 1.995 30.063 0.568 3.400 1.093 0323 0.695 30.884 0.019 0.860
3103 1147 2198 28839 2115 5.584 1.850 0.765 0733 14185 0.396 1.346
1.057 0535 0639 16101 0371 1.521 2043 0542 0292 638 0777 1251
U230 0490 0731 21040 0449 1169 0.384 0.128 0.083 9.401 0423 0529
0759 0368 0440 13719 2780 3.043 20420759 1471 25619 1.259 2911
1219 0331 0630 30581 0.087 0.929 3219 1337 1782 15466 0795 3.221
3018 1414 2196 21240 0389 3.089 2280 0.681 1391 27.095 0.521 2.327
2413 1.004 1.407 20289 0.675 2.309 0942 0296 0372 19811 1.137 1.465

Fuzzy MoDEL IDENTIFICATION 277

REFERENCES

Astrom K, Wittenmark B (1984): Computer Cont-
rolled Systems: Theory and Design, Englewood
Cliffs, NJ: Prentice Hall.

Bezdek J (1974): “Cluster validity with fuzzy sets.” J.
Cybernetics 3(3): 58-71.

Bezdek J, Hathaway R, Sabin M, Tucker W (1987):
“Convergence theory for fuzzy c-means: Counterex-
amples and repairs.” The Arnalysis of Fuzzy In-
formation, Bezdek J (ed), CRC Press, Vol. 3, Chap.
8.

Crowder RS (1990): “Predicting the Mackey-Glass
time series with cascade-correlation learning.” In
Proc. 1990 Connectionist Models Summer School,
Carnegie Mellon University, pp. 117-123.

Dunn J (1974): “A fuzzy relative of the ISODATA
process and its use in detecting compact, well sepa-
rated cluster.” J. Cybernetics 3(3): 32-57.

Jang JSR (1993): “ANFIS: Adaptive-network-based
fuzzy inference system.” IEEFE Trans. on Systems,
Man & Cybernetics 23(3): 665-685.

Kikuchi S, Nanda R, Perincherry V (1994): “Estima-
tion of trip generation using the fuzzy regression
method.” 1994 Annual Meeting of Transportation
Research Board, Washington, D.C.

Mackey M, Glass L (1977): “Oscillation and chaos in
physiological control systems” Science 197: 287-289.

Powell MJD (1987): *‘Radial basis functions for multi-
variable interpolation: A review.” In Algorithms for
Approximation, Mason J, Cox M (ed), Oxford:
Clarendon Press, pp. 143-167.

278 CHIu

Strobach P (1990): Linear Prediction Theory: A
Mathematical Basis for Adaptive Systems, New
York: Springer-Verlag.

Sugeno M, Tanaka K (1991): “Successive identifica-
tion of a fuzzy model and its applications to predic-
tion of a complex system.” Fuzzy Sets and Systems
42(3): 315-334.

Takagt T, Sugeno M (1985): “Fuzzy identification of
systems and its application to modeling and
control.” [EEE Trans. on Systems, Man & Cyber-
netics 15: 116-132.

Wang LX, Mendel JM (1992): “Generating fuzzy
rules by learning from example.” IEEE Trans. on
Systems, Man & Cybernetics 22(6).

Wang LX (1993): “Training of fuzzy logic systems
using nearest neighborhood clustering.” Proc. 2nd
IEEE Int'l Conf. on Fuzzy Systems (FUZZ-IEEE),
San Francisco, CA, pp. 13-17.

Yager RR, Filev DP (1992): “Approximate clustering
via the mountain method.” Tech. Report #MII-
1305, Machine Intelligence Institute, fona College,
New Rochclle, NY. Also to appear in I[EEE Trans.
on Systems, Man & Cybernetics.

Yager RR, Filev DP (1993): ‘“‘Learning of fuzzy rules
by mountain clustering.” Proc. SPIE Conf. on Ap-
plications of Fuzzy Logic Technology. Boston, MA,
pp. 246-254.

Received January 1994
Accepted June 1994

